

ASX Trade Refresh

ASX Trade Open Interface Function Calls

December 2020

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 2/47

Table of Contents

1 Introduction ...5

1.1 Software Distribution Restrictions ... 5
1.2 Supported Platforms .. 5
1.3 ASX Trade Support ... 5
1.4 ASX Trade OI Documentation Suite.. 5
1.5 Restrictions .. 6

1.5.1 Trading Participant Specific Information ... 6
1.5.2 Broker Service Providers ... 6

1.6 Version History... 7

2 Error Messages ..8

2.1 Error Values Returned from Function Calls .. 8
2.2 Error Messages Returned from Transactions, Queries and Broadcasts ... 11

3 OI Function Calls ..12

3.1 omniapi_create_session – Create a Session with the OI .. 12

3.1.1 Format .. 12
3.1.2 Returns .. 12

3.2 omniapi_close_session – Close Session with the OI ... 12

3.2.1 Format .. 12

3.3 omniapi_login_ex – Login to ASX Trade ... 12

3.3.1 Format .. 12
3.3.2 Arguments .. 12
3.3.3 The omni_login_t Definition ... 13
3.3.4 Returns .. 13
3.3.5 Return Values .. 13
3.3.6 Calling Example ... 14

3.4 omniapa_logout_ex – logout from ASX Trade ... 15

3.4.1 Format .. 15
3.4.2 Arguments .. 15
3.4.3 Returns .. 15
3.4.4 Return Values .. 15
3.4.5 Calling Example ... 15

3.5 omniapi_set_newpwd_ex – Set a New Password .. 16

3.5.1 Format .. 16
3.5.2 Arguments .. 16
3.5.3 The omni_set_password_t Definition ... 16
3.5.4 Returns .. 17
3.5.5 Return Values .. 17
3.5.6 Calling Example ... 17

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 3/47

3.6 omniapi_tx_ex – Issue a Transaction ... 18

3.6.1 Format .. 18
3.6.2 Arguments .. 18
3.6.3 Returns .. 18
3.6.4 Return Values .. 19
3.6.5 Calling Example ... 19

3.7 omniapi_query_ex - Issue a Query ... 19

3.7.1 Format .. 19
3.7.2 Arguments .. 19
3.7.3 Returns .. 20
3.7.4 Return Values .. 21
3.7.5 Calling Examples.. 21

3.8 omniapi_set_event_ex – Request Subscription of Broadcasts ... 21

3.8.1 Format .. 21
3.8.2 Description .. 21
3.8.3 Arguments .. 21
3.8.4 Examples of Information Objects .. 24
3.8.5 Returns .. 25
3.8.6 Return Values .. 25
3.8.7 Calling Examples.. 25

3.9 omniapi_clear_event_ex – Cancel Event Subscription ... 27

3.9.1 Format .. 27
3.9.2 Description .. 28
3.9.3 Arguments .. 28
3.9.4 Returns .. 28
3.9.5 Return Values .. 29
3.9.6 Calling Examples.. 29

3.10 omniapi_read_event_ext_ex – Read Events .. 29

3.10.1 Format .. 29
3.10.2 Description .. 29
3.10.3 Arguments .. 29
3.10.4 Setting up and Clearing Subscriptions ... 31
3.10.5 Setting up Subscriptions .. 31
3.10.6 Clearing Subscriptions ... 32
3.10.7 Hints .. 32
3.10.8 omniapi_read_event_ext_ex - Event Types .. 32
3.10.9 Returns .. 33
3.10.10 Return Values .. 33
3.10.11 Calling Example ... 34

3.11 omniapi_read_event_block – Blocking Read Event ... 35

3.11.1 Description .. 35
3.11.2 Arguments .. 36
3.11.3 Returns .. 36
3.11.4 Return Values .. 36
3.11.5 Calling Example ... 37

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 4/47

3.12 omniapi_get_info_ex – Get Environment Information .. 37

3.12.1 Format .. 37
3.12.2 Description .. 37
3.12.3 Arguments .. 38
3.12.4 Returns .. 39
3.12.5 Return Values .. 39
3.12.6 Calling Example ... 39

3.13 omniapi_get_message_ex – Get an Exchange Message .. 39

3.13.1 Format .. 39
3.13.2 Description .. 40
3.13.3 Arguments .. 40
3.13.4 Returns .. 40
3.13.5 Return Values .. 40
3.13.6 Calling Example ... 40

3.14 omniapi_set_option_ex – Set Options for OI Session .. 41

3.14.1 Format .. 41
3.14.2 Description .. 41
3.14.3 Arguments .. 41
3.14.4 Encryption ... 41
3.14.5 Compression ... 42
3.14.6 Concurrent Broadcasts .. 42
3.14.7 Returns .. 42
3.14.8 Return Values .. 42

3.15 omniapi_set_option_default – Set Default Values for OI Session .. 43

3.15.1 Format .. 43
3.15.2 Description .. 43
3.15.3 Arguments .. 43

3.16 omniapi_cvt_int – Convert an Integer ... 43

3.16.1 Format .. 43
3.16.2 Description .. 43
3.16.3 Arguments .. 43

3.17 omniapi_cvt_string – Convert a String to/from the Central Format .. 43

3.17.1 Format .. 44
3.17.2 Description .. 44
3.17.3 Arguments .. 44
3.17.4 Example .. 44

3.18 omniapi_convert_timestruct – Convert Timestructs ... 44

3.18.1 Format .. 44
3.18.2 Description .. 44
3.18.3 Arguments .. 44
3.18.4 Return Values .. 45

4 Appendix 1 – Concurrent Broadcast Feature ...46

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 5/47

1 Introduction

ASX Trade contains Open Interface (OI) function calls that are used to enable communication between ASX Trade and
the participant’s site via a gateway.

There are 18 OI function calls in ASX Trade. These include:

 omniapi_create_session – Create a session with the OI
 omniapi_close_session – Close session with the OI
 omniapi_login_ex – Login to ASX Trade
 omniapi_logout_ex – Logout from ASX Trade
 omniapi_set_newpwd_ex – Set a new password
 omniapi_tx_ex – Issue a Transaction
 omniapi_query_ex - Issue a Query
 omniapi_set_event_ex – Request subscription of broadcasts
 omniapi_clear_event_ex – Cancel event subscription
 omniapi_read_event_ext_ex – Read events
 omniapi_read_event_block – Blocking read event
 omniapi_get_info_ex – Get environment information
 omniapi_get_message_ex – Get an exchange message
 omniapi_set_option_ex – Set options for OI session
 omniapi_set_option_default – Set default values for OI session
 omniapi_cvt_int – Convert an integer
 omniapi_cvt_string – Convert a string to/from the central format
 omniapi_convert_timestruct – Convert timestructs.

1.1 Software Distribution Restrictions

Restrictions on the distribution of the OI software are detailed in the Developer’s Agreement.

1.2 Supported Platforms

The following platforms are supported by ASX Trade:

 Linux Redhat Rhel6.10 x86 (32 and 64 bit)
 Linux Redhat Rhel7 x86 (32 and 64 bit)
 Windows 6.3 x86 (Windows Server 2012 R2 - 32 and 64 bit)
 Windows 10 x86 (Windows Server 2016 - 32 and 64 bit) ASX

1.3 Trade Support

For ASX Trade Open Interface Support, contact ASX Customer Technical Support team either via email on
cts@asx.com.au or phone 1800 663 053 (or on +61 2 9227 0372 from outside Australia).

1.4 ASX Trade OI Documentation Suite

ASX Trade Open Interface documentation has been created as a suite of documents that reference each other. The
suite of documentation includes the following documents:

 ASX Trade Introduction and Business Information – This includes an introduction to ASX Trade for Open Interface
developers and application providers. It also details business functionality to enable ASX Trade to be fully utilised.

 ASX Trade Open Interface Function Calls – This details the Open Interface function calls that enable communication
between ASX Trade and the participant.

mailto:cts@asx.com.au

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 6/47

 ASX Trade Transactions – This contains the transactions that are used to instruct ASX Trade to perform particular
actions.

 ASX Trade Queries – This details the queries that are used to retrieve information from ASX Trade.
 ASX Trade Broadcasts – This includes the broadcasts that are used to notify participants of an event or change

occurring in ASX Trade.

1.5 Restrictions

Certain confidential information is prescribed by ASX as ‘restricted information’. Details of what constitutes restricted
information are set out below.

Some ASX Trade information is restricted information and may not be divulged to anyone who is not a Designated
Trading Representative (DTR), except where that person is employed by an ASX Trading participant and has a need to
access that data as part of their duties.

1.5.1 Trading Participant Specific Information

Trading Participant Specific Information is the information specific to the trading participant that instigated a
transaction on ASX Trade and which is not distributed by ASX to other participants. Trading Participant Specific
Information must not be divulged to anyone who is not a Designated Trading Representative of the trading participant,
except where the person is employed by the trading participant and that person has a need to access that data as part
of their duties.

Trading participant specific information includes, but is not limited to, the following:

 Client and Info references on orders and trades
 Total quantity for Iceberg orders and undisclosed quantities on orders
 The unique identifier of a trading participant allocated by ASX, i.e. the trading participant number, or the

participant name in relation to Products other than Listed Funds, Warrants and Structured products, Exchanged
Traded Options and Futures

 Some order types, e.g. shortsell
 Signum (user/session) on orders and trades
 Expiry dates on orders
 Centre Point orders
 The short sell information on orders and trades
 Regulatory data
 Certain trade types e.g. BP (Booking Purpose); LN (Loan); LR (Loan Return)
 Booking reports resulting from Unintentional Crossing Prevention.

Participant Specific information is blanked out in enquiries where the order or trade does not belong to your trading
participant ID.

1.5.2 Broker Service Providers

The trading participant may use dealing/information systems provided by an information vendor.

If the trading participant requests, ASX can provide the vendor with:

 All of the trading participant’s specific information as detailed in Trading Participant Specific Information above.
 The vendor can then integrate this information into their dealing/information systems for the trading participant.
 A vendor that has access to Trading Participant Specific information is known as a Broker Service Provider (BSP).
 The BSP must keep this Trading Participant Specific Information confidential and must not collate or distribute this

information to anyone other than the relevant trading participant.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 7/47

1.6 Version History

This document has been revised according to the table below:

Version Date Comment

v2.1 October 2018  Updated to new ASX branding

v3.0 September 2019  Updated for ASX Trade Refresh

v3.1 January 2020  BI9 description updated (in sections 3.9 and 3.10) to a non-forced subscription

v3.2 June 2020  Updated omniapi_get_message_ex encryption details

v3.3 August 2020  Appendix 1 – Concurrent Broadcast Feature updated
 omniapi_login_ex – Login to ASX Trade return values updated

v3.4 December 2020  Appendix 2 - Environment Variable OAPI_TIMEOUT added

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 8/47

2 Error Messages

2.1 Error Values Returned from Function Calls

The following error values are common codes that can be returned from a function call.

Error Value Error Name Description

2028 OMNIAPI_PWD_IMPEND_EXP Login succeeded, but password will expire in the coming days.

2027 OMNIAPI_PWD_CHANGE_REQ Password has expired. The application will only get a restricted
access to the system until the password has been changed
successfully.

-1 OMNIAPI_FAILURE Failure completion. Internal error in the OI.

-2 OMNIAPI_NOT_READY OAPI not ready. The OI is not ready for an OMNIAPI call.

-3 OMNIAPI_FACID_NOT_VALID Facility ID not in range. An invalid facility type, most likely zero, was
used during an omniapi_tx_ex or omniapi_query_ex call.

-4 OMNIAPI_INVALID_TABLE Invalid table type. The transaction syntax and verification
subsystem has received an invalid transaction syntax table.

-5 OMNIAPI_NOT_LOGGED_IN OAPI not logged in. The gateway considers the user as logged out.

-9 OMNIAPI_NOT_INITIALIZED OAPI not initialised. Internal OI error code.

-10 OMNIAPI_NO_INFO_RCVD No network information received. Internal OI error code.

-11 OMNIAPI_NOBACKEND Backend communication failure. There are communication
problems with the central system.

-12 OMNIAPI_TX_ABORTED Transaction aborted. The transaction was aborted. The following
(TXSTAT) code explains the cause.

-13 OMNIAPI_TRUNCATED Data truncated. A query message response message was truncated.

-14 OMNIAPI_CNV_NO_RANGE Table conversion range error. Internal OI error code.

-15 OMNIAPI_CNV_NOT_SORTED Table conversion sort error. Internal OI error code.

-16 OMNIAPI_CNV_OFFS_ERROR Table conversion offset error. Internal OI error code.

-17 OMNIAPI_NO_SUCH_ID Invalid transaction type. The transaction type of the transaction is
incorrect or unauthorised.

-18 OMNIAPI_VER_FIELD_ERROR Transaction verification error. The transaction contents (after the
transaction type) are incorrect or not recognised.

-19 OMNIAPI_VER_INT_ERROR Message verification internal error

-20 OMNIAPI_VER_TABLE_ERROR Table verification error. Internal OI error code.

-21 OMNIAPI_TX_TIMEOUT Transaction timeout. This may have been caused by workload,
network problems or a backend problem.

-22 OMNIAPI_TX_DECLFAIL Transaction requester declaration failure. A connection to a
particular facility failed.

-23 OMNIAPI_TX_FAILURE Transaction failure. The following (TXSTAT) code explains the cause.

-24 OMNIAPI_DYNMEM Error obtaining dynamic memory. Memory allocation error in the
gateway.

-25 OMNIAPI_INVARG Invalid argument. An invalid facility type argument was specified to
omniapi_tx_ex or omniapi_query_ex routines.

-26 OMNIAPI_NOT_FOUND Requested data not found. Buffer is empty. No more events have
been received or returned from an omniapi_read_event_ext_ex

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 9/47

Error Value Error Name Description

call. Message also occurs when omniapi_get_info_ex is called with
an invalid information request.

-27 OMNIAPI_ITV_ERROR Information table verification error. Internal OI error code.

-28 OMNIAPI_NO_USR_OR_PASSW Username and/or password missing. The username or the
password was not provided with the login request.

-29 OMNIAPI_NO_NET_PATH Net path data missing. The gateway could not identify its network
path.

-30 OMNIAPI_INVEVT Invalid event type. An invalid event type was specified in a call to
omniapi_clear_event_ex.

-32 OMNIAPI_INVTXTYPE Invalid transaction type. A zero was passed as facility type to an
omniapi_tx_ex or omniapi_query_ex call.

-35 OMNIAPI_FATAL Fatal OAPI error. Internal OI error code.

-39 OMNIAPI_NOTAUTH The user is not authorised to perform the requested action.

-40 OMNIAPI_PASSW_EXPIRED The password has expired.

-41 OMNIAPI_INVALID_PASSW Password is not valid. The provided new password is not valid. The
new password breaches the password restrictions set by the
exchange. The reason for this may be that the password is shorter
than the minimum number of required characters or that the
password has already been used during the last few months.

-50 OMNIAPI_ENDIAN_ERROR Endian error, byte-swap failed.
Error when byte-swapping the transaction or query in the gateway.

-53 OMNIAPI_NETERR_LINK Network error between client and gateway.

-54 OMNIAPI_NETERR_TIMEOUT Timed out while waiting for results from the gateway.

-55 OMNIAPI_CONCUR_ERROR Error in concurrent connection. The OI has lost concurrent
connection with the gateway.

-56 OMNIAPI_CONCUR_DISABLE Concurrent connection is currently disabled.

-57 OMNIAPI_ERROPTCONC Concurrent connection not supported.

-2000 OMNIAPI_PROBLEM Error in OMNIAPI internal call. Internal OI error code.

-2001 OMNIAPI_INTFAILURE Internal OMNIAPI error. Internal OI failure in the OMnet API library.

-2003 OMNIAPI_BADNARGS Bad number of arguments. An incorrect number of arguments were
passed to the OMNIAPI routine.

-2004 OMNIAPI_BADARGVAL Bad argument value. At least one argument contains an incorrect
value.

-2005 OMNIAPI_NONETWORK The network software is unavailable for inter process
communication.

-2006 OMNIAPI_OSBADCONFIG The operating system is incorrectly configured.

-2008 OMNIAPI_NOTCONNECTED Invalid operation before login. The OI application has no network
link to the gateway.

-2009 OMNIAPI_NOGWYSRV Unable to connect to gateway. Possible causes are the host or
socket name is incorrect, the gateway does not exist or a previous
session with the gateway was incorrectly terminated.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 10/47

Error Value Error Name Description

-2010 OMNIAPI_BADHOSTNAME Host name could not be translated. An unknown or syntactically
incorrect host name for the gateway node was specified in a login
request.

-2011 OMNIAPI_ERRSOCKET Error assigning a local socket.

-2012 OMNIAPI_ERRCONNECT System error occurred during a login request.

-2013 OMNIAPI_ERRBIND System error occurred during a socket bind operation.

-2014 OMNIAPI_NOSESSION Session is aborted. The network link to the gateway was
disconnected.

-2015 OMNIAPI_ERRSEND Error on send(). An error occurred during a send operation.

-2016 OMNIAPI_ERRMEM Error on malloc(). An error occurred when allocating dynamic
memory.

-2017 OMNIAPI_APIOLD OMNIAPI too old for the gateway. The OI application is linked with
an old unsupported version of the OMnet API library.

-2019 OMNIAPI_SESINUSE Gateway OI session already in use. There is an ongoing OI call for
the session, or a previous session has been incorrectly terminated.

-2020 OMNIAPI_ERROPTCMPZ Compression option rejected. The requested compression option
was rejected by the gateway.

-2021 OMNIAPI_ERROPTENCRYPT Encryption option rejected. The requested encryption option was
rejected by the gateway.

-2022 OMNIAPI_ERR_SECURE Failed to establish secure link between the OI client application and
the gateway.

-2023 OMNIAPI_LOGIN_DISABLED User login has been disabled in the central system.

-2024 OMNIAPI_INVALID_LOGIN_ATTEM
PT

Invalid login attempt due to a user setup related problem.

-2025 OMNIAPI_OMNBE_BUSY Please wait - backend is busy. Central processes are busy and
cannot handle user login requests at the moment.

-2026 OMNIAPI_LOGIN_FAILED Communications/database problems. There may have been
problems to communicate with the central system, or internal
database problems caused the login to fail.

-2029 OMNIAPI_INVALID_CHRS The new password contains invalid characters. Characters 0x01 to
0x19, “%” and “\” are not allowed in passwords.

-2030 OMNIAPI_NO_NULL_TERMINATIO
N

String has to be null-terminated.

-2031 OMNIAPI_WRONG_TX_SIZE The provided buffer size is not correct.

-2032 OMNIAPI_CALL_NOT_SUPPORTED The call is not supported by the exchange.

-2033 OMNIAPI_INVALID_LOGIN_LOCKED Login denied. User account is locked.

-2034 OMNIAPI_INVALID_LOGIN_SUSPEN
DED

Login denied. User account is suspended.

-2035 OMNIAPI_RELOGIN_NOT_ALLOWE
D

Login denied, re-login is not allowed. There is an already on-going
session with this user account. The exchange has configured that
re-login is not allowed.

-2036 OMNIAPI_NOT_APPLICABLE The requested information is not applicable to the user or the
session.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 11/47

Error Value Error Name Description

-2037 OMNIAPI_INVALID_LOGIN_INACTI
VE

Login denied. User account is inactivated.

-2038 OMNIAPI_INVALID_BEF_CHG_PWD Invalid request before password is changed. The user’s password
has expired. The user will have restricted access to the system until
the password has been changed successfully.

-2043 OMNIAPI_PART_NOT_FOUND Backend partition not found.

-2044 OMNIAPI_PART_NOT_REACHABLE Backend partition not reachable for the given transaction.

-2045 OMNIAPI_CONCUR_EXISTS Concurrent connection already exists for the session.

-2046 OMNIAPI_INVALID_IDENT Invalid concurrent identifier, session may be lost. An invalid session
was encountered by the gateway when establishing a concurrent
connection.

2.2 Error Messages Returned from Transactions, Queries and Broadcasts

Refer to Genium INET – System Error Messages Reference for details on why transactions, queries and broadcasts are
being aborted. This is located at: https://www.asxonline.com/public/documents/asx-trade-refresh-manuals.html

https://www.asxonline.com/public/documents/asx-trade-refresh-manuals.html

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 12/47

3 OI Function Calls

The following OI function calls can be used in ASX Trade.

3.1 omniapi_create_session – Create a Session with the OI

This routine enables the use of multiple sessions in the same process. Each session with the OI must log in with a
separate user ID.

3.1.1 Format

omniapi_session_handle hSession = omniapi_create_session()

3.1.2 Returns

hSession

hSession returns a handle to be used for all other omniapi function calls.

Note:
It is important to close the session before opening a new session. Each session occupies system resources within
the OI that are freed when it is closed.

3.2 omniapi_close_session – Close Session with the OI

This routine closes the session with the OI and the socket used. It should be called after logout.

3.2.1 Format

void omniapi_close_session(

omniapi_session_handle hSession) // in

hSession

This must have been created using the omniapi_create_session() function.

Note:
It is important to log out before closing the session; otherwise the resources created for the login at the gateway
will not be released immediately.

3.3 omniapi_login_ex – Login to ASX Trade

The omniapi_login_ex routine is used to log in to ASX Trade.

3.3.1 Format

int32 cstatus = omniapi_login_ex(

omniapi_session_handle hSession, // in

int32 * txstat, // out

omni_login_t * login_data) // in

3.3.2 Arguments

hSession

This argument must have been previously created with the omniapi_create_session call.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 13/47

txstat

This argument is used to get further information about the routine completion.

If cstatus txstat contains

differs from
OMNIAPI_SUCCESS

If txstat differs from zero, a secondary status code from the trading system or gateway is
present.

login_data

The omni_login_t structure has the following layout. Note that all strings must be NULL terminated.

typedef struct

{ /* OMnet login data structure */

 omni_username user_s; /* user identification */

 omni_password pass_s; /* password */

 char gateway_node_s[128]; /* gateway node name or ip-number */

 uint32_t port_u; /* gateway port number */

 char appl_ident_s[32]; /* program identification */

 uint8_t forced_u; /* LOGIN_NORMAL=normal login, */

 /* LOGIN_FORCED=forced login */

 char filler_3_s[3]; /* filler */

} omni_login_t;

3.3.3 The omni_login_t Definition

Type Name Size Mandatory Description

omni_username user_s 32* Yes The username string. Must be NULL terminated.

omni_password pass_s 32* Yes The user password string. Must be NULL terminated.

char gateway_node _s 128* Yes Gateway host/node name or TCP/IP address of the
gateway executor node. Must be NULL terminated.

uint32_t port_u 4 Yes Port number of the gateway process. This integer is
required to remain in native endian format. Do not byte
swap this number.

char appl_ident_s 32* No Program identifier of the application. For example:
“QUICKTRADE V24-3”. Must be NULL terminated.

uint8_t forced_u 1 Yes Flag for normal/forced login. If a login error is received
indicating that a user is already logged on, setting this flag
to one overrides the existing user and forces them to be
disconnected.

*Includes NULL termination, i.e. ‘\0’

3.3.4 Returns

cstatus

The completion code is used for checking the operation of the call. If cstatus is negative, the call has failed. The
completion code gives an indication of the problem. If cstatus is OMNIAPI_SUCCESS or positive then the operation was
successful. In either case, the txstat argument may hold more detailed information.

3.3.5 Return Values

If the error OMNIAPI_PWD_CHANGE_REQ is returned from the login function, the session is only able to execute the
following functions until the password is changed (see omniapi_set_newpwd_ex – Set a New Password):

 omniapi_get_info_ex

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 14/47

 omniapi_get_message_ex
 omniapi_read_event_ext_ex
 omniapi_set_newpwd_ex
 omniapi_logout_ex.

After the password has been successfully changed, full functionality is available.

If the error OMNIAPI_PWD_IMPEND_EXP is returned, it indicates that the password will expire within a certain number
of days. The precise number of days till expiry may be retrieved using the omniapi_get_info_ex function call. For more
information see omniapi_get_info_ex – Get Environment Information.

The following error values are specific codes that omniapi_login_ex can produce.

Error
Code

Error Message Description

-28 OMNIAPI_NO_USR_OR_PASSW Username and/or password missing. The username or the
password was not provided with the login request.

2027 OMNIAPI_PWD_CHANGE_REQ Password has expired. The application will only get a restricted
access to the system until the password has been changed
successfully.

2028 OMNIAPI_PWD_IMPEND_EXP Login succeeded, but password will expire in the coming days.

-2031 OMNIAPI_WRONG_TX_SIZE The provided buffer size is not correct.

-2032 OMNIAPI_CALL_NOT_SUPPORTED The call is not supported by the exchange.

-2033 OMNIAPI_INVALID_LOGIN_LOCKED Login denied. User account is locked.

-2034 OMNIAPI_INVALID_LOGIN_SUSPENDED Login denied. User account is suspended.

-2035 OMNIAPI_RELOGIN_NOT_ALLOWED Login denied, re-login is not allowed. There is an already on-going
session with this user account. The exchange has configured that
re-login is not allowed.

3.3.6 Calling Example

The following program excerpt demonstrates the use of the omniapi_login_ex call.

int32_t APISAMPLE_Login(char* username, char* password, char* node, char* port)

{

 omni_login_t loginData;

 omni_password newpassword;

 int32_t cstatus;

 int32_t txStatus;

 memset(&loginData, 0, sizeof(loginData));

 memset(&newpassword, 0, sizeof(newpassword));

 strncpy(loginData.user_s, username, sizeof(loginData.user_s));

 strncpy(loginData.pass_s, password, sizeof(loginData.pass_s));

 strncpy(loginData.gateway_node_s, node, sizeof(loginData.gateway_node_s));

 loginData.port_u = atoi(port);

 strncpy(loginData.appl_ident_s, "APISAMPLE", sizeof(loginData.appl_ident_s));

 loginData.forced_u = LOGIN_NORMAL;

 cstatus = omniapi_login_ex(hSession, &txStatus, &loginData);

 if (cstatus == OMNIAPI_SUCCESS)

 {

 printf("Successfully logged in\n");

 }

 else if (cstatus > 0)

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 15/47

3.4 omniapa_logout_ex – logout from ASX Trade

The omniapi_logout_ex routine is used to logout from ASX Trade. Once called, the session should be closed and not
reused for subsequent logons.

3.4.1 Format

int32 cstatus = omniapi_logout_ex(

omniapi_session_handle hSession, // in

int32 * txstat) // out

3.4.2 Arguments

hSession

This argument must have been previously created with the omniapi_create_session call.

txstat

This argument is used to get further information about the routine completion.

3.4.3 Returns

cstatus

The completion code is used for checking the operation of the call. If cstatus is negative, the call has failed. The
completion code gives an indication of the problem. If cstatus is OMNIAPI_SUCCESS or positive then the operation was
successful. In either case, the txstat argument may hold more detailed information.

3.4.4 Return Values

The following error value is a specific codes that omniapi_logout_ex can produce.

Error Code Error Message Description

-2008 OMNIAPI_NOTCONNECTED Invalid operation before login. The OI application has no network link
to the gateway.

3.4.5 Calling Example

The following program excerpt demonstrates the use of the omniapi_logout_ex call.

int32_t APISAMPLE_Logout()

{

 int32_t cstatus;

 int32_t txStatus;

 cstatus = omniapi_logout_ex (hSession, &txStatus);

 if (OMNIAPI_SUCCESS == cstatus)

 {

 printf("Successfully logged out\n");

 }

 else

 {

 printf("Error: Logout failed, completion status = %d\n", cstatus);

 }

 return cstatus;

}

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 16/47

3.5 omniapi_set_newpwd_ex – Set a New Password

The omniapi_set_newpwd_ex routine is used to set a new password.

This routine may be called any time after logging on to the system. It should be called if the error
OMNIAPI_PWD_CHANGE_REQ is returned from the login function (see omniapi_login_ex – Login to ASX Trade for more
information).

3.5.1 Format

 int32_t cstatus = omniapi_set_newpwd_ex (

 omniapi_session_handle hSession, // in

 int32_t * txstat, // out

 omni_set_password_t * pwd_data) // in

3.5.2 Arguments

hSession

This argument must have been previously created with the omniapi_create_session call.

txstat

This argument is used to get further information about the routine completion.

If cstatus txstat Contains

differs from
OMNIAPI_SUCCESS

If txstat differs from zero, a secondary status code from the trading system or gateway is
present.

pwd_data

typedef struct

{

 omni_password pass_s;

 omni_password new_pass_s;

} omni_set_password_t

3.5.3 The omni_set_password_t Definition

Type Name Size Mandatory Description

omni_password pass_s 32 Yes The old password.

omni_password new_pass_s 32 Yes The new password.

The new password must meet the following criteria:

 The password string has to be NULL (‘\0’) terminated.
 The password must contain at least eight characters.
 The length of the password may not exceed 32 characters including the NULL termination character.
 The characters in the password must belong to the printable character set (valid characters are hex 0x20 – 0x7E

except for 0x25 and 0x5C).
 There must be at least one alphabetic character from A-Z in the password.
 There must be at least one numerical character from 0-9 in the password.
 There must be at least one special character in the password.

Special characters include:

! @ # $ ^ & * () - _ = + , < . > / ? ;: ' " [{] } |

 The password should not be found in the dictionary of common words.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 17/47

 A password cannot be re-used within a period of 12 months.

Note:
 ‘%’ and ‘\’ are not allowable characters in a password.

3.5.4 Returns

Cstatus

The completion code is used for checking the operation of the call. If cstatus is negative, the call has failed. The
completion code gives an indication about the problem. If cstatus is OMNIAPI_SUCCESS or positive then the operation
was successful. In either case, the txstat argument may hold more detailed information.

3.5.5 Return Values

The following error values are specific codes that omniapi_set_newpwd_ex can produce.

Error Code Error Message Description

-41 OMNIAPI_INVALID_PASSW Password is not valid. The provided new password is not valid. The
new password breaches the password restrictions set by the
exchange. The reason for this may be that the password is shorter
than the minimum number of required characters or that the
password has already been used during the last few months.

-2029 OMNIAPI_INVALID_CHRS The new password contains invalid characters. Characters 0x01 to
0x19, “%” and “\” are not allowed in passwords.

-2030 OMNIAPI_NO_NULL_TERMINATION String has to be NULL terminated.

3.5.6 Calling Example

The following program excerpt demonstrates the use of the omniapi_set_newpwd_ex call:

int32_t APISAMPLE_SetNewPassword(char* currentPassword,

 char* newPassword)

{

 omni_set_password_t setNewpwd;

 int32_t cstatus;

 int32_t txStatus;

 memset(&setNewpwd, 0, sizeof(setNewpwd));

 strncpy(setNewpwd.pass_s, currentPassword, sizeof(setNewpwd.pass_s));

 strncpy(setNewpwd.new_pass_s, newPassword, sizeof(setNewpwd.new_pass_s));

 cstatus = omniapi_set_newpwd_ex(hSession, &txStatus, &setNewpwd);

 if (cstatus >= OMNIAPI_SUCCESS)

 {

 printf("Successfully set a new password \n");

 }

 else

 {

 printf("Set new password failed. Completion status = %d\n", cstatus);

 }

 return cstatus;

}

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 18/47

3.6 omniapi_tx_ex – Issue a Transaction

The omniapi_tx_ex routine is used for entering the transactions defined in ASX Trade Transactions.

3.6.1 Format

 int32 cstatus = omniapi_tx_ex (

 omniapi_session_handle hSession, // in

 int32 * txstat, // out

 uint32 factyp, // in

 omni_message ** txmsgs, // in

 uint32 * txidnt, // out

 uint32 * ordidt); // out

3.6.2 Arguments

hSession

This argument must have been previously created with the omniapi_create_session call.

txstat

This argument is used to get further information about the routine completion.

If cstatus txstat Contains

Is zero or positive A secondary status code from the trading system.

Is negative A code showing the cause of the failure, coming from the OI, the Enhanced Transaction
Router (ETR) Messages or the trading system.

factyp

The facility type is described in ASX Trade Introduction and Business Information - Facilities.

txmsgs

This is a vector of pointers to message buffers (omni_message) that should be sent to ASX Trade. The vector must be
NULL terminated. Currently, only one omni_message buffer is supported.

This field contains the message structures defined in ASX Trade Transactions.

txidnt

This argument references an eight byte block receiving a unique 64-bit identification of the transaction.

ordidt

The ordidt argument holds a reference to an 8 byte (64 bit) order identification number. Users need this entity to
recognise matched orders when parsing broadcasts and queries. Users should note that the order identifier returned
here is in native endian format, and therefore PUTORDERID macro must not be used. Refer to ASX Trade Introduction
and Business Information for more information.

3.6.3 Returns

cstatus

The completion code is used for checking the operation of the call. If cstatus is negative, the call has failed. The
completion code gives an indication of the problem. If cstatus is OMNIAPI_SUCCESS or positive then the operation was
successful. In either case, the txstat argument may hold more detailed information.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 19/47

3.6.4 Return Values

A list of common error codes can be found in 2 Error Messages

3.6.5 Calling Example

The following program excerpt demonstrates the use of the omniapi_tx_ex call:

int32_t APISAMPLE_SendTx(void* buffer, uint32_t length, uint32_t facilityType)

{

 omni_message* message[2]; /* only use the first item */

 char sendBuffer[MAX_REQUEST_SIZE];

 int32_t retStatus;

 if(facilityType == 0)

 {

 printf("Error! SendTx called with facilityType == 0.\n");

 return -1;

 }

 message[0] = (omni_message*)sendBuffer;

 message[1] = NULL;

 memcpy(&sendBuffer[0], &length, sizeof(length));

 memcpy(&sendBuffer[sizeof(length)], buffer, length);

 retStatus = omniapi_tx_ex(

 hSession,

 &glTransactionStatus,

 facilityType,

 message,

 &glTransactionId[0],

 &glOrderId);

 return retStatus;

}

3.7 omniapi_query_ex - Issue a Query

The omniapi_query_ex routine is used for sending the query requests defined in ASX Trade Queries. It is used to
retrieve information from ASX Trade.

3.7.1 Format

 int32 cstatus = omniapi_query_ex (

 omniapi_session_handle hSession, // in

 int32 * txstat, // out

 uint32 factyp, // in

 omni_message * qrymsg, // in

 int8 retflg, // in

 int8 * rcvbuf, // out

 uint32 * rcvlen, // in/out

 uint32 * txidnt, // out

 uint32 * ordidt) // out

3.7.2 Arguments

hSession

This argument must have been previously created with the omniapi_create_session() call.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 20/47

txstat

This argument is used to get further information about the completion of the routine.

If cstatus txstat Contains

Is zero or positive A secondary status code from the trading system application.

Is negative A code showing the cause of the failure, coming from the OI, ETR or the ASX Trade.

factyp

The facility type is described in ASX Trade Introduction and Business Information.

qrymsg

This argument is a reference to an omni_message buffer containing the query structure.

retflg

This argument must be set to one.

rcvbuf

This argument is a reference to a buffer about to receive the resulting message. This buffer must be allocated by the
calling routine and is populated with an answer structure.

rcvlen

The receive length argument specifies the length of the buffer provided with the rcvbuf argument. This argument has
two interpretations:

 On input - the length of the caller’s provided buffer.
 On completion - number of bytes used in response.

Note:
When querying several segments, this argument must be reset to the size of the buffer between every call, since
it is modified to the length of the data returned.

Note:
This is returned in native endian format.

txidnt

This argument references an 8 byte block receiving a unique 64 bit identification of the query.

ordidt

The ordidt argument holds a reference to an eight byte (64 bit) order identification number. This parameter is not
utilised in the OI, and its value in this function call can be ignored.

3.7.3 Returns

cstatus

The completion code is used for checking the operation of the call. If cstatus is negative, the call has failed. The
completion code gives a hint about the problem. If cstatus is OMNIAPI_SUCCESS or positive then the operation was
successful. In either case, the txstat argument may hold more detailed information.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 21/47

3.7.4 Return Values

A list of common error codes can be found in 2 Error Messages.

3.7.5 Calling Examples

int32_t APISAMPLE_Query(void* qryBuffer, uint32_t qryLength, uint32_t

 facilityType, void* rcvBuffer, uint32_t* rcvLength)

{

 int8_t sendBuffer[MAX_REQUEST_SIZE];

 omni_message* queryMessage;

 quad_word dummyOrderId;

 int32_t cstatus;

 queryMessage = (omni_message*)sendBuffer;

 memcpy(&sendBuffer[0], &qryLength, sizeof(qryLength));

 memcpy(&sendBuffer[sizeof(qryLength)], qryBuffer, qryLength);

3.8 omniapi_set_event_ex – Request Subscription of Broadcasts

The omniapi_set_event_ex() routine is used to set up a subscription to broadcasts.

3.8.1 Format

int32 cstatus = omniapi_set_event_ex (

omniapi_session_handle hSession, // in

uint32 evtype, // in

int8 * buffer) // in/out

3.8.2 Description

The omniapi_set_event_ex() routine is used for setting up broadcast subscriptions. A user can either filter subscriptions
in order to receive only certain broadcasts of interest, or request to receive everything for which they are authorised.

The omniapi_set_event_ex() call must precede the first call to omniapi_read_event_ext_ex() except when the
omniapi_read_event_ext_ex() is called with two SHOW options.

3.8.3 Arguments

hSession

This argument must have been previously created with the omniapi_create_session call.

evtype

ASX Trade authorises the event types a user may subscribe to. The omniapi_read_event_ext_ex() routine must be
called to get a list of such types. The list is returned as a comma separated, NULL terminated string, e.g. ”1, 2, 001\0”.
The OI application can parse the list and call omniapi_set_event_ex() for each event type in it.

Event type one designates broadcasts from the trading system itself. In this case the subscription filtering can be used
(see the buffer argument below). For all other event numbers the buffer argument must be NULL.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 22/47

buffer

The very first call to omniapi_set_event_ex() determines whether the subscription filtering is to be used. If the
subscription mechanism is not used (that is, this buffer argument is NULL), the gateway automatically requests
subscription for all authorised information. In this case it is not possible to set up a new filtered subscription.

If the subscription filtering is used, this buffer argument contains the memory address of a structure containing the
filter information. The subscription filtering is only supported for event type one. In all other cases, the buffer is ignored
and should be set to NULL by the user.

Using the set_event_list_t structure, the buffer contains the following layout:

Length Field
(4 bytes)

Item 1
(20 bytes)

…
Item ‘n’
(20 bytes)

Field Explanation

Length Field The length of the whole buffer. This length field is included.

Item An item that identifies a subscription filtering request.

The format of a subscription item has the following format (defined as subscr_item_t):

Information Object
(12 bytes)

Subscription Handle
(4 bytes)

Status
(4 bytes)

Field Explanation

Information Object Is filled in by the caller.
Identifies the subscription filter information.

Subscription Handle Identifies the request. Filled in when the subscription is completed.
The subscription handle is used when subscriptions are cleared, that is, when the routine
omniapi_clear_event_ex() is called.

Status Indicates whether the request was accepted. Filled in when the subscription is completed.
The following values could be returned in the status field:
OMNIAPI_SUCCESS – Successful completion; the subscription request was accepted.
OMNIAPI_NOTAUTH – Not authorised to subscribe to the requested information.
OMNIAPI_ALR_SET – This event has already been requested.

An information object structure is used to specify a single subscription request. It is a 12 byte structure (defined as
infobj_t) with the following layout:

Information Source
(2 bytes)

Information Type
(2 bytes)

Broadcast Type
(4 bytes)

Attribute
(4 bytes)

The value zero in the above fields serves as a wildcard. However, not every field is allowed to have a wildcard. The table
below provides details on each field:

Field Explanation

Information Source Identifies the information origin, i.e. the exchange code. For ASX Trade this value is always
15. This field cannot have a wildcard.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 23/47

Field Explanation

Information Type Identifies how the attribute field (see below) is to be interpreted.

Possible values include:
1 = General
2 = Derivatives
3 = Underlying
4 = Dedicated
5 = Not used
6 = Reserved for internal use
7 = Instrument Class
8 = Instrument Dedicated.
Note: Wildcards are not allowed.
Broadcasts listed in ASX Trade Broadcasts indicate what sort of information type is
supported.

Broadcast Type The actual broadcast identifier, for example BI41. See ASX Trade Broadcasts for all
broadcasts.

Attribute This field varies depending on the information type.
General Information Type (value = 1)
The purpose of the general broadcast is to send general text messages, market
information, and market updates, e.g., “market has opened”.
For this information type, the attribute should be set to zero.
Derivative Information Type (value = 2)
The purpose of this attribute is to get information for one instrument class for a certain
expiration date.
For this information type the attribute is interpreted as three fields with the following
format:
Commodity (2 bytes)
Expiration Date Year (1 byte)
Expiration Date Month (1 byte).
The value for the Commodity code is identical to the one used in the commodity code of
the series binary code. Refer to series_t in ASX Trade Broadcasts. It can contain a wildcard.
The Expiration Date, Year and Month fields are obsolete and exist only for historical
reasons. They should be set to zero.
This selection is narrower than for the underlying information type described below as it
pertains only to derivatives.
Underlying Information Type (value = 3)
The purpose of the underlying information type is to get price information for an
underlying, or its derivatives. This information type can also be used for status information
on an underlying, e.g. to check if an underlying has been suspended.
The attribute for this information type is a single field – Commodity (four bytes). Although
it differs in byte size, the values to be used here are identical to those used in the
commodity value in the series binary code. It can contain a wildcard. Refer to ASX Trade
Broadcasts for more information.
Dedicated Information Type (value = 4)
The purpose of this attribute is to receive individually dedicated broadcasts, e.g. order
information and contract information.
Broadcasts with this information type are dedicated to a specific user or participant.
For this information type, the attribute is a structure of two fields with the following
format:

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 24/47

Field Explanation

Set to 1 (2 bytes)
Member info (2 bytes).
If all broadcasts directed to the participant (that is, all users with the same participant
code) are to be received, the Member Info must be set to zero.
If only broadcasts directed to the specific user are to be received, the Member Info must
be set to one.
Instrument Class Information Type (value = 7)
The purpose of this attribute is to filter broadcasts based on instrument class.
For the instrument class information type the attribute is interpreted as three fields with
the following format:
Underlying (2 bytes)
Market (1 byte)
Instrument Group (1 byte).
The underlying can contain a wildcard. The market and instrument group can contain a
wildcard only if both do so. A market and wildcard group cannot be specified, or vice versa.
Instrument Dedicated Information Type (value = 8)
The purpose of this information type is to filter broadcasts based on the attributes
participant and instrument type. Instrument type is the combination of the 1 byte codes
for the market and the instrument group respectively. Refer to series_t in ASX Trade
Broadcasts.
The attributes to this type are:
Member info (2 bytes)
Market (1 byte)
Instrument Group (1 byte).
Participants (member info) and instrument types are given using their internal numerical
representations.
It is possible to wildcard the subscription as follows:
Any permutation of explicit participant and instrument type
Explicit participant and wildcard instrument type
Wildcard participant and wildcard instrument type
Own participant and explicit instrument type
Own participant and wildcard instrument type.
A zero in the member part of the attribute means “all participants”. A zero in the
instrument type part of the attribute means “all instrument types”. “Own Participant” is
represented with an internal reserved value (65535). This reserved value is switched to the
actual Participant ID by the gateway.
Unless specifically permissioned (e.g. BSP user type), users are only able to subscribe to
their “Own Participant” information.

3.8.4 Examples of Information Objects

Information Object Description

15-1-BI41-1 This filter matches broadcasts from ASX (Exchange = 15) that are general in nature
(Information Type = 1), relating to the ‘BI41’ broadcast. The attribute field is not in use and
is currently always set to one.

15-2-BI63-0:0:0 This filter matches broadcasts from ASX (Exchange = 15) that relate to derivatives
(Information Type = 2) and involve the ‘BI63’ broadcast for any commodity (attribute = 0,
i.e. wildcard).

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 25/47

Information Object Description

15-7-BO14-5080:2:6 This filter matches broadcasts from ASX (Exchange = 15) that relate to instrument class
(Information Type = 7) and involve a ‘BO14’ broadcast for BHP American Call Options
(underlying = 5080, market = 2, group = 6).

Note:
When querying several segments, this argument must be reset to the size of the buffer between every call, since
it is modified to the length of the data returned. For any particular broadcast, the OI does not allow users to
subscribe using wildcards if they have only been permitted for specific attributes of that broadcast. E.g., if a user
is permitted for
15-7-BO15-0-101-200 and 15-7-BO15-0-102-200, etc., and then attempts to subscribe using an information
object of 15-7-BO15-0-0-0, an error is returned. This is as a result of attempting to wildcard the market and
group attributes when it has only been permitted as specific values. Where a wildcard has been permitted, it can
be used or the user can be more specific if required.

3.8.5 Returns

cstatus

Status of the C function completion – less than zero if request failed; zero or greater if subscription was successful.

3.8.6 Return Values

A list of common error codes can be found in 2 Error Messages.

3.8.7 Calling Examples

The following program demonstrates the use of the omniapi_set_event_ex() call setting up subscriptions for event type
one (general broadcasts). The first example shows how to subscribe to all authorised information objects. The second
example shows how to subscribe to specific broadcasts.

Example 1 – Subscribe to all Authorised Information Types

void APITEST_SubscribeAll()

 {

 uint32_t buffSize = 10000; /* strbuffer size */

 char *strBuffer;

 int32_t getEventStatus;

 char *strPtr;

 uint32_t eventType;

 int32_t cstatus;

 strBuffer = (char*)malloc(buffSize);

 getEventStatus = APITEST_GetAllEventTypes(&strBuffer, &buffSize);

 if(getEventStatus != OMNIAPI_SUCCESS)

 {

 free(strBuffer);

 strBuffer = 0;

return;

 }

 strPtr = &strBuffer[0];

 do {

eventType = strtoul(strPtr, &strPtr, 10);

if (eventType != 0) {

 completionStatus = omniapi_set_event_ex(hSession, eventType, NULL);

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 26/47

 if (*strPtr != '\0') strPtr++; /* skip the comma delimiter */

 }

 } while (*strPtr != '\0' && eventType != 0 && completionStatus >= 0);

 free(strBuffer);

 strBuffer = 0;

 return;

}

Example 2 – Subscribe to Specific Broadcasts

int32_t APISAMPLE_SubscribeIndividualEvents()

{

 /*

 * Subscribe for Information source=15, Informationtype=4, Broadcast=BI7,

 * for all members

 */

 int32_t cstatus;

 uint16_t infsrc = 15;

 uint16_t inftyp = 4;

 int8_t module = 'B';

 int8_t server_type = 'I';

 uint16_t broadcast_number_n = 7;

 uint16_t deriv_commodity_n = 0; /* Used for inftyp = 2 */

 uint8_t deriv_exp_year_c = 0; /* Used for inftyp = 2 */

 uint8_t deriv_exp_month_c = 0; /* Used for inftyp = 2 */

 uint32_t underl_commodity_u = 80; /* Used for inftyp = 3 */

 uint32_t member_info_n = 0; /* Used for inftyp = 4 */

 cstatus = APISAMPLE_SetEvent(

 infsrc,

 inftyp,

 module,

 server_type,

 broadcast_number_n,

 deriv_commodity_n,

 deriv_exp_year_c,

 deriv_exp_month_c,

 underl_commodity_u,

 member_info_n,

 dissemination_u

);

 return cstatus;

}

int32_t APISAMPLE_SetEvent(

 uint16_t infsrc,

 uint16_t inftyp,

 int8_t module,

 int8_t server_type,

 uint16_t broadcast_number_n,

 uint16_t deriv_commodity_n,

 uint8_t deriv_exp_year_c,

 uint8_t deriv_exp_month_c,

 uint32_t underl_commodity_u,

 uint32_t member_info_n,

 uint32_t dissemination_u)

{

 infobj_t* bcinfo;

 /*

 * The type definition only includes a single item, even

 * though it is possible to have a list of items.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 27/47

 */

 set_event_list_t list;

 list.buflen_i = sizeof(set_event_list_t);

 bcinfo = &list.subitm_x[0].infobj_x;

 bcinfo->infsrc_n = infsrc;

 bcinfo->inftyp_n = inftyp;

 bcinfo->brdcst_x.central_module_c = module;

 bcinfo->brdcst_x.server_type_c = server_type;

 bcinfo->brdcst_x.transaction_number_n = broadcast_number_n;

 switch(inftyp)

 {

 case 1:

 bcinfo->attrib_x.general_x.no_use_u = 1; /* Always 1 */

 break;

 case 2:

 bcinfo ->attrib_x.derivative_x.commodity_n = deriv_commodity_n;

 bcinfo ->attrib_x.derivative_x.exp_year_c = deriv_exp_year_c;

 bcinfo ->attrib_x.derivative_x.exp_month_c = deriv_exp_month_c;

 break;

 case 3:

 bcinfo ->attrib_x.underlying_x.commodity_u = underl_commodity_u;

 break;

 case 4:

 bcinfo->attrib_x.dedicated_x.no_use_n = 1; /* Always 1 */

 bcinfo->attrib_x.dedicated_x.member_info_n = member_info_n;

 break;

 /* Have not yet done case 7 and case 8 */

 default:

 /* Unknown inftyp */

 return -1;

 }

 return omniapi_set_event_ex(hSession, 1, (char*)&list);

}

int32_t APITEST_GetAllEventTypes(char **strBuffer, uint32_t *buffSize)

{

 int32_t cstatus;

 glTransactionStatus = 0; /* Clear it, since we return a completion status */

 cStatus = omniapi_read_event_ext_ex(

hSession,

OMNI_EVTTYP_SHOW,

 *strBuffer,

buffSize,

0,

0);

 if(cstatus != OMNIAPI_SUCCESS)

 {

 printf("Error: Couldn't retrieve subscription event types\n”);

 }

 return cstatus;

}

3.9 omniapi_clear_event_ex – Cancel Event Subscription

This routine is called in order to cancel a subscription of specific event types or broadcasts.

3.9.1 Format

int32 cstatus = omniapi_read_event_ext_ex(

 omniapi_session_handle hSession, // in

uint32 evtype, // in

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 28/47

int8 * rcvbuf, // out

uint32 * rcvlen, // in/out

uint32 * evtmsk, // reserved

uint32 optmsk) // in

3.9.2 Description

This call cancels receipt of broadcasts for the event type specified.

Note:
If the buffer argument is used, all objects in the buffer are cancelled from the subscriptions setup.

All subscriptions that have been set up with omniapi_set_event_ex() can be cancelled with omniapi_clear_event_ex().

If only a subset of the subscriptions is to be cancelled, the user is required to fill the buffer with the actual objects.

If buffer is set to NULL (0), all subscriptions are cancelled.

Note:
Subscription filtering is only supported for event type 1 (general events).

3.9.3 Arguments

hSession

This argument must have been previously created with the omniapi_create_session call.

evtype

This argument specifies the event type of the events for which the broadcasts will be cancelled.

buffer

The first four bytes declare the size of the buffer (length field included). The rest of the buffer contains a list of
subscription handles to be cleared. A subscription handle is retrieved when the application enables the subscription in
the call to omniapi_set_event_ex().

Field Explanation

L, 4 bytes The length of the whole buffer, including this length field.

H, 4 bytes A subscription handle.

If this buffer is specified as NULL, all active subscriptions will be cleared (see omniapi_read_event_ext_ex – Read Events
for more information).

Note:
The buffer argument is only supported in conjunction with event type 1 (general types).

3.9.4 Returns

cstatus

Status of the C function completion – less than zero if request failed; zero or greater if cancellation of subscription(s)
was successful.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 29/47

3.9.5 Return Values

A list of common error codes can be found in 2 Error Messages.

3.9.6 Calling Examples

The following program demonstrates the use of the omniapi_clear_event_ex call to cancel a subscription for events
type 1 (general events). In the example below, the information object that was subscribed to earlier is cleared.

void APISAMPLE_ClearSubscription (uint32_t subscriptionHandle)

{

 int32_t clearStatus;

 uint32_t clrVec[2];

 clrVec[0] = sizeof(clrVec);

 clrVec[1] = subscriptionHandle;

 clearStatus = omniapi_clear_event_ex (hSession,

 1,

 clrVec);

 return clearStatus;

}

3.10 omniapi_read_event_ext_ex – Read Events

This routine must be called regularly to receive broadcast messages unless the OI user is making use of the concurrent
broadcast feature on which case omniapi_read_event_block is to be used.

3.10.1 Format

int32 cstatus = omniapi_read_event_ext_ex (

 omniapi_session_handle hSession, // in

uint32 evtype, // in

int8 * rcvbuf, // out

uint32 * rcvlen, // in/out

uint32 * evtmsk, // reserved

uint32 optmsk) // in

3.10.2 Description

This routine retrieves broadcasts that have been buffered at the gateway.

Note:
The user must read broadcasts for which they have set up subscriptions in a timely manner. One method of
doing this is to use nested loops, where the outer loop polls with some reasonable time interval, while the inner
loop iterates as long as there is data available.

3.10.3 Arguments

hSession

This argument must have been previously created with the omniapi_create_session call.

evtype

This parameter may specify either a single event type or all (OMNI_ EVTTYP_ALL) in order to check and fetch events.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 30/47

If set to OMNI_EVTTYP_SHOW, a list of enabled event types is received. A typical string received in the rcvbuf argument
would be “1,2,3\0”.

Note:
The string is NULL terminated.

If set to OMNI_EVTTYP_SHOW_SUBSCR a list of broadcasts that the user is authorised to receive is returned.

For more information, see omniapi_read_event_ext_ex – Event Types for full details.

rcvbuf

This argument references the receive buffer that is to be updated with event data.

rcvlen

The receive length argument specifies the length of the buffer provided with the rcvbuf argument. This argument has
two interpretations:

Interpretation Explanation

On input The length of the caller’s provided buffer.

On completion The length of the buffer received from the gateway.

evtmsk

This argument is reserved and currently ignored. Set to NULL.

optmsk

The optmsk argument is a bit mask value stating optional behaviour of the omniapi_read_event_ext_ex() call. If the
least significant bit is set (optmsk set to READEV_OPTMSK_MANY), the buffer depicted by the rcvbuf and rcvlen
arguments is completed with broadcast messages chained together.

If the least significant bit is not set (optmsk set to READEV_OPTMSK_SINGLE), then the buffer contains just one
broadcast message. The buffer can contain either one header (just the length) or two headers (the length and a
subscription header) prefacing each event.

Field Explanation

Lx, 2 bytes The Lx length fields are two byte (little endian) unsigned integers. Users on big endian
platforms have to byte-swap the contents of this field to determine the length of the event
buffer.
The event buffer is always padded with zeros to a longword (4 byte) boundary. The
preceding length field includes the padding.

SHx, 4 bytes Added if the application has filtered subscriptions when omniapi_set_event_ex() was
called.
No valid information is stored in this position.

When the user has filtered subscriptions and used the READEV_OPTMSK_MANY option, the rcvbuf has the following
format (mapping to the definition subscribed_event_t, which is 6 bytes in size).

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 31/47

When the user has filtered subscriptions and used the READEV_OPTMASK_SINGLE option, then the rcvbuf has the
following format.

If filtering subscriptions have not been used (omniapi_set_event_ex() was invoked with NULL as the parameter), the
buffer has the following format.

If a single message is requested, it has the following format.

Each event is always padded with zeros to a longword(byte) boundary. The preceding length field includes the padding.

3.10.4 Setting up and Clearing Subscriptions

The header of an event is always either six or two bytes as described above. Only subscriptions concerning event type 1
(refer to omniapi_set_event_ex – Request Subscription of Broadcasts) affect the size of the event header.

3.10.5 Setting up Subscriptions

When setting up subscriptions, the following rules apply:

 Only the very first subscription setup affects the event header size.
 If the first subscription is a specific subscription, i.e. a buffer is provided as third argument to the

omniapi_set_event_ex routine; the event header size is six bytes (subscribed_event_t structure).

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 32/47

 If the first subscription is a subscription for all events of a particular event type, i.e. a NULL buffer is provided for
the third argument to the omniapi_set_event_ex routine, the event header size is two bytes (length of event).

Note: A participant who wishes to receive Price Information Heartbeat messages is required to subscribe to BI9. If the
participant doesn't have any other subscriptions or event types set up previously, the event header size will be six
bytes.

Examples

If a subscription for event type 990 (Dedicated Events) is set up at first, and then a subscription for a specific event, the
event header is still two bytes in length.

If a subscription for a specific broadcast is set up at first, and then a subscription for event type 990 (Dedicated Events),
the event header is still six bytes in length.

3.10.6 Clearing Subscriptions

When clearing subscriptions (refer to omniapi_clear_event_ex – Cancel Event Subscription), the following rules apply:

 If the event header size is six bytes, and the subscription for event type 1 is cleared, the event header is two bytes
in size from that point on.

 If the event header size is six bytes, and the last specific filtered subscription is cleared, the event header size is two
bytes from that point on.

 The event header size cannot change from two bytes to any other size when unsubscribing for events.

Examples

If a subscription for a specific event is set up, and then a subscription for event type 1 is set up, the event header is six
bytes. When the event type 1 subscription is cleared, the event header becomes two bytes.

The last item of the buffer is empty and filled with zeros.

3.10.7 Hints

When fetching broadcasts, if the length is –1 (signed) or 65535 (unsigned) the header size is six bytes, and the first four
bytes is a handle, which is always minus one (-1).

If a subscription for event type one is set up at first, the header is always two bytes. This means that if only specific
subscriptions are required, there is a possibility to set up a subscription for event type one. Then the specific
subscriptions are set up, and the subscription for event type one is cleared. This always provides a header of two bytes
even if subscriptions are added or removed, until the last specific subscription is removed and new ones set up.

3.10.8 omniapi_read_event_ext_ex - Event Types

The evtype argument depicts the type and number of messages to be read or fetched. This includes the following.

Value Type of Result

OMNI_EVTTYP_ALL Any event message.

OMNI_EVTTYP_SHOW_SUBSCR Lists all information objects for which the user is authorised to subscribe.

OMNI_EVTTYP_SHOW List of event types enabled by the trading configuration.

OMNI_EVTTYP_NETWORK Any network status message.

In order to identify the valid event types, users should issue an omniapi_read_event_ext_ex call (using the
OMNI_EVTTYP_SHOW option) before any other event handling calls, in order to get a list of valid event types. The event
type literals are defined in the omnifact.h file.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 33/47

In a normal configuration, calling the omniapi_read_event_ext_ex with OMNI_EVTTYP_SHOW option, the following
string would be returned:

"1001,1,990,\0"

When calling the omniapi_read_event_ext_ex() with the OMNI_EVTTYP_SHOW_SUBSCR option, a structure with a list
(show_subsc_list_t) of authorised information objects (auth_infobj_t) will be returned. The list contains a 32 bit
number specifying the number of authorised information objects returned, with the objects following the number:

Item Count
(4 bytes)

Auth. Info. Obj. 1
(16 bytes)

…………..
Item ‘n’
(16 bytes)

Each authorised information object (auth_infobj_t) has the following format:

Information Object
(12 bytes)

Force Flag
(4 bytes)

The force flag contains two possible values:
0 = not automatically subscribed by gateway
1 = automatically subscribed by gateway.

If the force flag field has a value of one, the OI automatically requests a subscription for that particular information
object.

The Information object may contain wildcards for any of its broadcast types or attributes. A wildcard indicates that
there is no authorisation control for that particular field (wildcard = 0).

Note:
For any particular broadcast, the OI does not allow users to subscribe using wildcards if they have only been
permitted for specific attributes of that broadcast. E.g., if a user is permitted for 15-7-BO15-0-101-200 and 15-7-
BO15-0-102-200, etc., and then attempts to subscribe using an information object of 15-7-BO15-0-0-0, an error
is returned. An error is returned as the user is attempting to wildcard the market and group attributes when
they have only been permitted as specific values.

Only where a wildcard has been permitted it can be used, or the user can be more specific if required.

3.10.9 Returns

cstatus

Status of the C function completion – less than zero if request failed; zero or greater if subscription was successful.

Note:
If there is no broadcast available, the return code is either the negative OMNIAPI_NOT_FOUND or the positive
OMNIAPI_ALLEVTS. The OMNIAPI_NOT_FOUND is not to be regarded as an error.

3.10.10 Return Values

The following error values are specific codes that omniapi_login_ex can produce. A list of common error codes can be
found in 2 Error Messages.

Error Value Code Description

4 OMNIAPI_ALLEVTS All events collected.

3 OMNIAPI_OVERFLOW Success, but at least one event message was lost. Users should begin to
recover their market picture if they receive this return value.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 34/47

Error Value Code Description

-26 OMNIAPI_NOT_FOUND Success, but there was no broadcasts available in the buffer.

-30 OMNIAPI_INVEVT An invalid event type was specified.

-39 OMNIAPI_NOTAUTH User is not allowed to read this event type.

3.10.11 Calling Example

The example how to use omniapi_set_event() also explains how to use omniapi_read_event_ext_ex with the
OMNI_EVTTYP_SHOW options. The example program below polls all broadcasts, stores them in a buffer, and based on
the broadcast, performs the proper action.

void APISAMPLE_PollBroadcasts()

{

 static char buffer[MAX_RESPONSE_SIZE];

 int32_t cstatus;

 uint32_t buffSize;

 cstatus = OMNIAPI_SUCCESS;

 while(cstatus == OMNIAPI_SUCCESS)

 {

 buffSize = sizeof(buffer);

 cstatus = omniapi_read_event_ext_ex(

hSession,

OMNI_EVTTYP_ALL,

buffer,

&buffSize,

0,

READEV_OPTMSK_MANY);

 if(cstatus >= OMNIAPI_SUCCESS)

 {

 if (cStatus == OMNIAPI_OVERFLOW) {

 printf("The gateway buffer has overflowed!!\n”);

printf(“Start recovery process!!\n");

return;

 }

 else if (cStatus == OMNIAPI_ALLEVTS) {

 printf("All events collected.\n");

 }

 APISAMPLE_ParseAndDistributeBroadcasts(buffer, buffSize);

 }

 else if (OMNIAPI_NOT_FOUND == completionStatus)

 {

 printf("No broadcasts in buffer\n");

 }

 else

 {

 APISAMPLE_ReportError(completionStatus);

 }

 }

}

void APISAMPLE_ParseAndDistributeBroadcasts(int8_t* buffer, uint32_t buffsize)

{

 char *current; /* Pointer to the current pos in the in buffer */

 uint32_t totalLength;

 uint16_t eventLength = 1;

 uint32 skipSH = 0;

 totalLength = buffsize;

 current = buffer;

 if(gIndividualBdxSubscr)

 {

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 35/47

 /* The Subscription handle of 4 bytes before each broadcast

 * has to be skipped.

 */

 skipSH = sizeof(uint32_t);

 }

 while((buffer + buffsize >= current) && (eventLength > 0))

 {

 /* Skip Subscription handle if necessary */

 current = current + skipSH;

 /* Get the length of the event */

 eventLength = *(uint16_t*)current;

 /* Step to the start of the actual broadcast */

 current = current + sizeof(uint16_t);

 if (eventLength > 0)

 {

 APISAMPLE_HandleBroadcast(current, eventLength);

 }

 /* Step to the beginning of the next header */

 current = current + eventLength;

 }

}

void APISAMPLE_HandleBroadcast(int8_t* broadcast, uint16_t length)

{

 static broadcast_type_t typeBI9 = {'B','I',9};

 broadcast_type_t* bc;

 bc = (broadcast_type_t*)broadcast;

 if(memcmp(bc, &typeBI9, sizeof(broadcast_type_t)) == 0)

 {

 APITEST_HandleBroadcastBI9(broadcast, length);

 return;

 }

 printf("Broadcast <%c%c%i> received\n", bc->central_module_c,

 bc->server_type_c, bc->transaction_number_n);

}

void APISAMPLE_HandleBroadcastBI9(int8_t* broadcast, uint16_t length)

{

 info_heartbeat_t* info_heartbeat;

 info_heartbeat = (info_heartbeat_t*)broadcast;

 printf("Broadcast <BI9>: Heartbeat every %d secs for %s.\n",

 info_heartbeat->heartbeat_interval_c,

 info_heartbeat->description_s);

}

3.11 omniapi_read_event_block – Blocking Read Event

This routine is used for retrieving broadcasts when the concurrent broadcast feature is enabled for the session.

int32 cstatus = omniapi_read_event_block(

omniapi_session_handle hSession, // in

uint32 evtype, // in

int8 * rcvbuf, // out

 uint32 * rcvlen, // in/out

uint32 timeout, // in

uint32 waittype) // in

3.11.1 Description

This function is used on a concurrent connection to read events, blocking for the specified time period if no broadcasts
are available for retrieval. For this function to succeed, the concurrent broadcast feature must be enabled for this
session. For more information on concurrent broadcasts refer to Appendix 1 – Concurrent Broadcast Feature.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 36/47

3.11.2 Arguments

hSession

This argument must have been previously created with the omniapi_create_session call.

evtype

This parameter may specify either a single event type or all (OMNI_ EVTTYP_ALL) in order to check and fetch events.

If set to OMNI_EVTTYP_SHOW, a list of enabled event types is received. A typical string received in the rcvbuf argument
would be “1,2,3\0”. Note: the string is NULL terminated.

If set to OMNI_EVTTYP_SHOW_SUBSCR a list of broadcasts that the user is authorised to receive is returned.

See omniapi_read_event_ext_ex for full details.

rcvbuf

This argument references the receive buffer that is to be updated with event data.

rcvlen

The receive length argument specifies the length of the buffer provided with the rcvbuf argument. This argument has
two interpretations:

Interpretation Explanation

On input The length of the caller’s provided buffer.

On completion The length of the buffer received from the gateway.

timeout

This argument specifies the time period (in milliseconds) the function will block if no broadcasts are available for
retrieval. The function will block until the condition specified by the argument waittype is satisfied. The minimum value
that can be specified is zero and the maximum value cannot be greater than 10 seconds (10,000 milliseconds).

waittype

This argument specifies the condition for the wait. Currently only one value is supported:

OMNIAPI_BDXBUFFER_ATLEAST_ONE - Wait till at least one broadcast is available.

The buffer, specified by the rcvbuf argument, is completed with chained broadcast messages (events). For more details
refer to omniapi_read_event_ext_ex – Read Events under the description of READEV_OPTMSK_MANY event mask.

3.11.3 Returns

cstatus

Status of the C function completion – less than zero if request failed; zero or greater if subscription was successful.

Note:
If there is no broadcast available, the return code is either the negative OMNIAPI_NOT_FOUND or the positive
OMNIAPI_ALLEVTS. The OMNIAPI_NOT_FOUND is not to be regarded as an error.

3.11.4 Return Values

A list of common error codes can be found in 2 Error Messages.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 37/47

3.11.5 Calling Example

int PollBdx(omniapi_session_handle hSession)

{

int sts, cont=0;

unsigned int len;

short bdxlen, txn;

 char *buff;

 broadcast_type_t *bdx;

 len=64000;

 /*

 * Call blocking read_event API call for retrieving broadcasts. * This will block for 2

seconds if no broadcasts are available.

 */

 sts = omniapi_read_event_block(hSession, OMNI_EVTTYP_ALL,

 bdx_buff,&len, 2000, OMNIAPI_BDXBUFFER_ATLEAST_ONE);

 if (sts < OMNIAPI_SUCCESS)

 {

 printf("Poll Error : ");

 printf("Status : %d (%s)\n", sts, GetErrorMsg(hSession,

 sts));

 return 0;

 }

 /*

 * Run through the buffer and print received broadcasts

 * Only the broadcast type and its size is printed

 */

 buff = bdx_buff + 4;

 bdxlen = *(uint16 *)buff;

 PUTSHORT(bdxlen, bdxlen);

 printf(" ");

 while (bdxlen > 0)

 {

 bdx = (broadcast_type_t *) (buff + sizeof(uint16));

 PUTSHORT(txn, bdx->transaction_number_n);

 printf("[%c%c%-3i] ",bdx->central_module_c, bdx-

 >server_type_c, txn);

 buff = buff + bdxlen + 6;

 bdxlen = *(uint16 *)buff;

 PUTSHORT(bdxlen, bdxlen);

 ++count;

 if (!((count) % 4)) /* Print 4 events per line */

 printf("\n ");

 }

 printf("\n");

 printf(" Total Bdx:%d, Size:%d\n\n", count, len);

 return 1;

3.12 omniapi_get_info_ex – Get Environment Information

This routine returns system information according to the information type requested.

3.12.1 Format

int32 cstatus = omniapi_get_info_ex (

omniapi_session_handle hSession, // in

int32 * reason_pi, // out

uint32 inftyp_u, // in

uint32 * inflen_pu, // in/out

void * infbuf_p) // out

3.12.2 Description

This is a generic routine for retrieving OI related information.

For example, this routine may be used for retrieving the numeric value for a facility type.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 38/47

Note:
This call can only be performed when logged in.

3.12.3 Arguments

hSession

This argument must have been previously created with the omniapi_create_session() call.

reason_pi

Upon completion, this argument contains additional information about the cause of a call failure. The message text
relating to the failure can be retrieved with the omniapi_get_message_ex() routine.

inftyp_u

This argument specifies the type of information requested. The following information types exist.

Information Type Description

OMNI_INFTYP_USERCODE Gets information about the user code assigned to the logged in user. The information
buffer is assigned 12 characters.

OMNI_INFTYP_FACTYP_E0 Retrieves the facility number for the first external facility on the trading system. The
information buffer is assigned a four byte integer.

OMNI_INFTYP_OMEXVERSI
ON

Gets information about the current OI version. The version will be presented as a 128 byte
character string.

OMNI_INFTYP_BANDWIDTH Gets information about the bandwidth limitation and usage.

OMNI_INFTYP_OMEXEXCHN
AME

Gets the exchange name as an acronym. Name is returned as a NULL-terminated string.

OMNI_INFTYP_OMEXEXCHC
ODE

Gets the exchange code. Returned data struct is omni_unsigned_num_t.

OMNI_INFTYP_COMPRESSIO
N

Gets information on whether compression is used for the connection. Returned data
struct is omni_signed_num_t. Returned values are OMNIAPI_OPVAL_DISABLE or
OMNIAPI_OPVAL_ENABLE (in native endian format).

OMNI_INFTYP_CONCURREN
T_BDX

Gets information about the concurrent broadcast support on the gateway. Returned data
struct is omni_signed_num_t. Returned value is OMNIAPI_OPVAL_ENABLE (in native
endian format) if concurrent broadcasts are enabled.

OMNI_INFTYP_ENCRYPTION Gets information on whether encryption is used for the connection. Returned data struct is
omni_signed_num_t.
Returned values are OMNIAPI_OPVAL_DISABLE or OMNIAPI_OPVAL_ENABLE (in native
endian format).

OMNI_INFTYP_PWD_EXPIRA
TION

Gets the number of days to password expiration. Returned data struct is
omni_signed_num_t. If the returned value is negative then the password has expired, the
indicated number of days ago.
If the password has no expiration, OMNIAPI_NOT_APPLICABLE is returned as completion
status.
If the gateway does not have the information, OMNIAPI_NOT_FOUND is returned as
completion status.

OMNI_INFTYP_TIME_UTC Gets the Coordinate Universal Time (UTC) of the trading system. Returned data struct is
omni_time_info_t.

OMNI_INFTYP_TIME_LOCAL Gets the local time of the trading system. Returned data struct is omni_time_info_t.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 39/47

inflen_pu

This argument has two functions:

 Before the call it describes the size of the provided information buffer.
 On call completion the argument holds the size of the returned information.

infbuf_ps

This argument references a call-provided buffer that is about to be updated with the requested OI information.

3.12.4 Returns

cstatus

Status of the C function completion – less than zero if request failed; zero or greater if the information was available.

3.12.5 Return Values

A list of common error codes can be found in 2 Error Messages.

3.12.6 Calling Example

int32_t APISAMPLE_GetFacilityTypes()

{

 uint32_t factypeSize;

 int32_t cstatus;

 factypeSize = sizeof(glFacilityType_EP0);

 cstatus = omniapi_get_info_ex(

 hSession,

 &glTransactionStatus,

 OMNI_iNFTYP_FACTYP_E0,

 &factypeSize,

 &glFacilityType_EP0);

 if(cstatus != OMNIAPI_SUCCESS)

 {

 printf("Error: Couldn't get Facility type. Completion status = %d\n",

 cstatus);

 }

 return cstatus;

}

3.13 omniapi_get_message_ex – Get an Exchange Message

This routine returns a message string associated with a message code for a logged in user.

3.13.1 Format

int32 cstatus = omniapi_get_message_ex(

omniapi_session_handle hSession, // in

int32 msgcod, // in

char msgstr, // out

uint32 msglen, // in/out

int32 simple(// in

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 40/47

3.13.2 Description

All messages listed in the document OMex System Error Messages Reference AS, are returned, except positive OI
routine return codes.

Note:
A “not connected” error message can cause problems by establishing a loop, if returned improperly.

3.13.3 Arguments

hSession

This argument must have been previously created with the omniapi_create_session() call.

msgcod

The message argument holds a message return from an earlier omn_api call.

msgstr

This argument references the string buffer about to receive the message string associated with the message code. The
received string is not NULL terminated, meaning that the number of bytes that is written to the string buffer matches
the msglen argument.

msglen

The message length argument specifies the length of the buffer provided with the msgstr argument. This argument has
two meanings:

On input it has the length of the caller’s provided buffer

On output it has the length of the string received from the gateway.

simple

This variable is not used.

3.13.4 Returns

cstatus

Status of the C function completion – less than zero if request failed; zero or greater if the information was available.

3.13.5 Return Values

A list of common error codes can be found in 2 Error Messages.

3.13.6 Calling Example

void APISAMPLE_ErrorTest(int32_t errorId)

{

char errorMsg[100];

int32_t errorMsgLength;

int32_t compStat;

if (errorId >= 0)

{

return;

}

scanf("%d", &errorId);

errorMsgLength=sizeof(errorMsg);

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 41/47

compStat = omniapi_get_message_ex(hSession, errorId, errorMsg,

&errorMsgLength, 0);

if(compStat == OMNIAPI_SUCCESS)

{

printf(" Completion status: %10d -> %s\n", errorId, errorMsg);

}

}

3.14 omniapi_set_option_ex – Set Options for OI Session

This routine is called in order to set up options for the OI session, such as:

 Compression
 Encryption
 Concurrent broadcast.

3.14.1 Format

int32 cstatus = omniapi_set_option_ex (

omniapi_session_handle hSession, // in

int32 opttype, // in

int32 optval) // in

3.14.2 Description

This routine sets options for already created sessions. The options can only be set before a login transaction has been
sent.

3.14.3 Arguments

session

This argument must have been previously created with the omniapi_create_session call.

opttype

This argument is the option to set. Definitions for the options are defined in omniapi.h.

optvalue

This argument is the value of the option. Definitions for the values used with options are specified in omniapi.h.

3.14.4 Encryption
The ASX OMNet API does not support encryption. The OMNIAPI_OPT_ENCRYPT opttype parameters
OMNIAPI_OPVAL_ANY and OMNIAPI_OPVAL_ENABLE will result in a connection rejection.

When setting encryption options, the OMNIAPI_OPT_ENCRYPT definition is used as the opttype parameter. Valid values
for encryption options are:

Values Description

OMNIAPI_OPVAL_ANY This is the default value. The setting for the gateway is used.

OMNIAPI_OPVAL_ENABLE The user demands encryption, and if encryption is disabled on the gateway or not
implemented in the OI on the current platform, the login is rejected.

OMNIAPI_OPVAL_DISABLE The user demands that encryption must not be used. If the gateway has enforced
encryption, the login is rejected.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 42/47

The following table shows how the connection is set up with different settings. Please note the encryption setting is to
disallow.

API Client Encryption Setting
Gateway Encryption Setting

Any Required Disallow

OMNIAPI_OPVAL_ANY No encryption Encryption Connection is rejected

OMNIAPI_OPVAL_ENABLE Encryption Encryption Connection is rejected

OMNIAPI_OPVAL_DISABLE No encryption Connection is rejected No encryption

3.14.5 Compression

When setting compression options, the OMNIAPI_OPT_COMPRESS definition is used as the opttype parameter. Valid
values for compression options are:

Values Description

OMNIAPI_OPVAL_ANY This is the default value. The setting for the gateway is used.

OMNIAPI_OPVAL_ENABLE The user demands compression. If compression is disabled on the gateway, the login is
rejected.

OMNIAPI_OPVAL_DISABLE The user demands that compression must not be used. If the gateway has enforced
compression, the login is rejected.

The following table shows how the connection is set up with different settings:

OI Client Compression Setting
Gateway Compression Setting

Any Required Disallow

OMNIAPI_OPVAL_ANY No compression Compression No Compression

OMNIAPI_OPVAL_ENABLE Compression Compression Connection is Rejected

OMNIAPI_OPVAL_DISABLE No Compression Connection is Rejected No Compression

3.14.6 Concurrent Broadcasts

When enabling or disabling the concurrent broadcast feature, the OMNIAPI_OPT_CONCURRENT_BDX definition is used
as the opttype parameter. Valid values for concurrent options are:

Values Description

OMNIAPI_OPVAL_ENABLE Enables the concurrent broadcast feature for the current session. An error will be returned
if the gateway does not support concurrent broadcasts or if the feature is already enabled
for this session.

OMNIAPI_OPVAL_DISABLE Disables the concurrent broadcast feature for the current session. An error will be
returned if the feature is already disabled for this session.

3.14.7 Returns

cstatus

Status of the C function completion – less than zero if request failed; zero or greater if request was successful.

3.14.8 Return Values

A list of common error codes can be found in 2 Error Messages.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 43/47

3.15 omniapi_set_option_default – Set Default Values for OI Session

This routine is used to set default values for sessions created after this routine has been called.

3.15.1 Format

int32 cstatus = omniapi_set_option_default(

int32 opttype, // in

int32 optval) // in

3.15.2 Description

This routine is used to set default values on options for sessions created after the routine has been called. This routine
does not affect any sessions that have already been created.

3.15.3 Arguments

opttype

This argument is the option to set. Definitions for the options are defined in omniapi.h.

optvalue

This argument is the value of the option. Definitions for the values used with options are specified in omniapi.h.

For argument explanation see omniapi_set_option_ex.

3.16 omniapi_cvt_int – Convert an Integer

This routine is called when the application needs to convert two or four byte binary integer data from little endian
format to big endian format or vice versa.

3.16.1 Format

void omniapi_cvt_int (

void* number, // in/out

int16 numsiz) // in

3.16.2 Description

This routine is called when the application needs to convert two or four byte binary integer data from little endian
format to big endian format or vice versa. It is not available on computers using little endian byte order.

3.16.3 Arguments

number

The number argument references the integer about to be converted.

numsiz

The numsiz argument gives the byte size of the integer about to be converted. This argument must be either two or
four bytes.

3.17 omniapi_cvt_string – Convert a String to/from the Central Format

This routine is called when the application wants to exchange application strings with a trade application.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 44/47

3.17.1 Format

cstatus = omniapi_cvt_string (

int8 toctrl, // in

uint8* ebtstr) // in/out

3.17.2 Description

This routine is used to convert an application 8 bit string from a non-ISO Latin-1 system to the character string encoding
of the trade application.

3.17.3 Arguments

toctrl

This boolean argument (“to trade”) states whether conversion is to or from the trade format, that is, the ISO Latin-1
character set.

 A boolean TRUE, normally a value of one, represents that the conversion is TO the trade format.
 A boolean FALSE, normally a value of zero, represents FROM the trade format.

ebtstr

This argument references a string whose contents are converted byte-by-byte from/to the local character
representation to/from the central character representation. The string is NULL terminated.

3.17.4 Example

Passing the MS-DOS represented string «ñá to this routine using the TO direction would produce a converted string «ñá
interpreted in a central application and a converted string 1/2±ß as seen from the MS-DOS application.

3.18 omniapi_convert_timestruct – Convert Timestructs

This routine is called when the application needs to convert an omni_tm_t data struct to a struct tm data struct.

3.18.1 Format

struct tm* omniapi_convert_timestruct(

omni_tm_t * omni_tm_p, // in

struct tm * tm_p) // out

3.18.2 Description

This routine is used to convert from the OI defined omni_tm_t data struct (little endian) to the struct tm (native
endian), which is defined within the C language.

3.18.3 Arguments

omni_tm_p

The omni_tm_t struct is in little endian.

tm_p

The struct tm is in native endian, i.e., the endian of the OI client application platform.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 45/47

3.18.4 Return Values

The tm_p pointer is returned.

If any of the arguments are NULL, the function returns NULL.

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 46/47

4 Appendix

4.1 Appendix 1 – Concurrent Broadcast Feature

 This functionality allows an OI application to use a concurrent thread to read broadcasts. ASX Trade Refresh OMNet
API libraries no longer establish two separate TCP connections to the gateway for utilising the concurrent broadcast
feature. Instead, the library uses a single connection with a different thread to read the broadcast. This allows a
multi-threaded application to use a blocking call for reading broadcasts (one which will not return until there is at
least one broadcast) whilst still being able to send in transactions and queries all under the same session. In effect
this allows the application to be continually polling for broadcasts without needing to interrupt other tasks.

 This functionality is optional and does not affect the legacy method of retrieving broadcasts from the gateway.
However ASX recommends that all latency dependent applications make use of this functionality.

4.2 Appendix 2 – Environment Variable OAPI_TIMEOUT

Omnet API users can timeout Omnet API calls by using "OAPI_TIMEOUT". This setting is in seconds, and it should be
exported as an operating system environment variable. The recommendation is that the variable should be set to a
time greater than 5 seconds, to cater for network re-convergence.

Disclaimer

This document provides general information only and may be subject to change at any time without notice. ASX Limited
(ABN 98 008 624 691) and its related bodies corporate (“ASX”) makes no representation or warranty with respect to the
accuracy, reliability or completeness of this information. To the extent permitted by law, ASX and its employees,
officers and contractors shall not be liable for any loss or damage arising in any way, including by way of negligence,
from or in connection with any information provided or omitted, or from anyone acting or refraining to act in reliance
on this information. The information in this document is not a substitute for any relevant operating rules, and in the
event of any inconsistency between this document and the operating rules, the operating rules prevail to the extent of
the inconsistency.

ASX Trade Marks

The trademarks listed below are trademarks of ASX. Where a mark is indicated as registered it is registered in Australia
and may also be registered in other countries. Nothing contained in this document should be construed as being any
licence or right to use of any trade mark contained within the document.

ASX®

© 2020 ASX Limited ABN 98 008 624 691 | Version v3.4 | December 2020 ASX Trade Open Interface Function Calls 47/47

