
EXTERNAL INTERFACE SPECIFICATION
VERSION 10.8 – JUN 2025

1. INTRODUCTION

The External Interface Specification (EIS) for the CHESS system provides
detailed information about the protocol used to communicate with CHESS, the
format and content of messages which are exchanged between CHESS users
and the CHESS computer system, and the format and meaning of the fields
within each message, including allowable data values and their meanings
where applicable.

We recommend that system developers within user organisations and third
party developers implement the full set of messages described in this
document which are appropriate to their sector of the industry.

This specification is not intended as a guide to the functions performed by
CHESS, nor to provide a management summary of the background to the
project. These and other aspects of the project are described in other CHESS
publications which are available from ASX and include:

• the CHESS Overview;

• Industry procedure guidelines.

The External Interface Specification is a controlled document. All updates are
provided through ASXOnline as and when they take effect.

A print version of the EIS is also provided through ASXOnline.

EXTERNAL INTERFACE SPECIFICATION

VERSION 10.8 – JUN 2025

2. TECHNICAL ARCHITECTURE & KEY COMPONENTS

2.1 Technical Architecture of the CHESS System

The technical architecture of CHESS encompasses the key physical
aspects of the processing sites, computer systems and associated
communications network. CHESS operates as a computer-to-computer
system with exchange of electronic information between the clearing
house computer systems and CHESS users' computer systems.

The technical architecture of CHESS is based on integration with existing ASX
processing facilities which comprise:

• two processing sites located 10 km apart;

• multiple computer processors and disk storage media in both sites.

The CHESS Network is illustrated in Figure 2.1 below.

CHESS allows the alternative processing site to act as a warm standby (that
is, able to resume processing within four hours of a failure).

The alternative processing site is also used for ongoing user testing of new
releases of CHESS software and for communications testing for new users.

CHESS users connect to CHESS via either the Telstra Austpac network or the
Optus eFinity network. All CHESS users are encouraged to migrate to the
Optus eFinity network.

EXTERNAL INTERFACE SPECIFICATION

VERSION 10.8 – JUN 2025

CHESS Network

Figure 2.1

Telstra Austpac or Optus eFinity Networks

CHESS Participant

CHESS Participant

CHESS Backup/Test
Sydney 2

CHESS Primary
Sydney 1

Optic
Fibre
Link

EXTERNAL INTERFACE SPECIFICATION

VERSION 10.8 – JUN 2025

2.2 Key Components of the External Interface

The external interface to CHESS consists of a number of discrete
components:

• the message structure describes the way in which message fields are

identified within a message (Section 3).

• the message types describe the particular message fields and their

sequence in each type of message (Section 4).

• the data representation describes the standard adopted for message

fields in CHESS (Section 7).

• the network definition describes the alternatives for establishing a

physical connection to CHESS together with the communications
protocols required to transmit information to or receive information from
CHESS (Section 10).

• the communications security includes mandatory and optional

features that are authorised for use with CHESS (Section 11).

Each of these components is described in more detail in the appropriate
section of this specification.

2.3 Standards

In conjunction with the preparation of this specification, a review of
communications standards in the finance industry, including SWIFT, ISO 7775
and AS2805/ISO 8583 was undertaken. Although elements of these
existing standards have been used in the design of the CHESS interface,
the decision has been taken not to adopt any particular standard in toto.

2.4 Nomenclature

The nomenclature used in this specification conforms to that commonly used
in communications standards.

EXTERNAL INTERFACE SPECIFICATION

VERSION 10.8 – JUN 2025

3. CHESS MESSAGE STRUCTURE

3.1. Principles

The CHESS data message structure is designed to satisfy the following
objectives:

• minimise the amount of information sent;

• enable the receiver to validate, simply and easily, the format of the

message;

• minimise the extent of system changes if the format of a message type

changes.

Each type of message allows a business function to be carried out. Any
particular message type may consist of mandatory and optional fields. This
improves efficiency in terms of system/communications capacity and cost as it
minimises the amount of information sent in any message.

The receiver of a CHESS message is able to inspect the message to validate
its correctness and integrity. The message structure is such that changes can
be easily made to a particular message type, and the changed message type
can be incorporated into all relevant communicating systems with minimal
programming and system design changes. The message structure adopted
for CHESS minimises the possibility of older versions of message types being
used accidentally.

The CHESS message format is commonly called a bit map structure. It is
used, for example, in the AS2805 and ISO 8583 standards.

3.2. Message Structure Implementation

The CHESS Data message is based on the bit map structure. The
structure of each message is defined by the bit map for that particular
message type as given in Section 4. Definition of the overall structure of
messages is given in Section 10.5.

The bit map is a 64 bit field which occurs after the message type in each
message. The presence or absence of a field in the message is indicated by
a bit in the bit map field.

The first bit of the bit map indicates the presence or absence of a bit map
extension, and the next 63 bits refer to specific CHESS fields. If a particular
message defines fields subsequent to the 63 referred to by the bit map, then a
bit map extension is used.

Mandatory fields, and optional fields (if present) in a particular instance of a
message type, have the appropriate bit set. Unused fields have the bit clear in
the bit map.

EXTERNAL INTERFACE SPECIFICATION

VERSION 10.8 – JUN 2025

If a bit map extension is defined for a particular message but only has optional
fields and a user chooses to omit all of those fields, the bit map extension
should not be included. In this case, the 'continuation bit' in the first bitmap
should be clear and the second bitmap should not be present, with data fields
starting immediately following the first bitmap. If a third bitmap were to be
defined, then a similar relationship would exist between the second and third
bitmaps. If data were present in a third bitmap, then the second bitmap is
required, even if only to indicate the presence of the third bitmap. If a fourth
bitmap were to be defined, then a similar relationship would exist between the
third and fourth bitmaps. If data were present in a fourth bitmap, then the third
bitmap is required, even if only to indicate the presence of the fourth bitmap.

Validation of the bit mapped messages is comparatively simple. The tabular
structure of the format implies a simple implementation for validation and
inspection. The bit map supplied in a particular message is checked against
the general bit map for that message type for correctness. The message
fields can be checked for format errors based on the general table.

Modifications can be made by incorporating new fields or message types in
the general bit map. Existing message types can have their component fields
easily modified or deleted.

The bit map message structure satisfies the criteria of minimising overheads,
being simple to validate and adaptable to change.

When developing code for the implementation of the bit mapped messages,
users should always endeavour to refer to the message's bit map to detect the
presence or absence of a field rather than relying on a pre-determined fixed
message structure interpreted from the specification. This will lead to easier
incorporation and tolerance of changes to message formats.

Where optional fields are not present in messages sent by users to CHESS,
CHESS will default these fields to either numeric zero, or character blank
depending on their data type.

3.3. Examples

An example of the bit map usage for a Holding Balance message is shown in
Figure 3.1 below.

Section 4 specifies which bit position corresponds to a particular field in a
given message.

EXTERNAL INTERFACE SPECIFICATION

VERSION 10.8 – JUN 2025

BIT

VALUE

MESSAGE FIELDS

FORMAT

TYPE `522'

1 0 Secondary Bit Map 64 bits clear

2 1 Security Code 12 character mandatory

3..15 0

16 1 HIN 10 numeric mandatory

17..20 0

21 1 Processing Timestamp 22 character mandatory

22..52 0

53 1 Total Unit Balance 11 numeric mandatory

54..61 0

62 1 Origin Transaction ID 16 character mandatory

63..64 0

FIGURE 3.1: BIT MAP STRUCTURE FOR HOLDING BALANCE

An example of the Holding Balance message using the bit map approach is
shown in Figure 3.2 below.

Field Name Value

Message Type 522

Bit Map X'4001080000000804'

Security Code AU000000WBC1

HIN 1234567890

Processing Timestamp 1993041919930419180430

Total Unit Balance 00000015000

Origin Transaction ID 1099042042000100

FIGURE 3.2: EXAMPLE OF A BIT MAPPED
MESSAGE FOR HOLDING BALANCE

EXTERNAL INTERFACE SPECIFICATION

VERSION 10.8 – JUN 2025

An example of the Tax File Number / Australian Business Number Advice
message is shown in Figure 3.3 below. This message illustrates the use of a
bit map extension, and also contains optional fields (refer to Message Type
533 in Section 4). Note that the bits for optional fields which are not present
are set off (zero).

Field Name Value

Message Type 533

Bit Map X'C001000000010000'

Second Bit Map X'0000000010000000'

Security Code AU000000WBC1

HIN 1234567890

Transaction Id 1099042042042100

Tax File Number / ABN 1 01234567898C

FIGURE 3.3: EXAMPLE OF THE TAX FILE NUMBER /
AUSTRALIAN BUSINESS NUMBER ADVICE MESSAGE

The definitions for the different data formats are given in Section 7.

The packaging of this section of data within the complete CHESS application
protocol transaction is specified in Section 10.

3.4. Bit Map Technical Representation

The examples above showed the bitmaps as a series of 'hexadecimal'
characters. When interpreting these from documentation, the following
convention applies:

 Write the selected bits as a sequence of 0s and 1s from left to right for

the full length of the bitmap(s) and separate these into groups of 4 digits.
For example, considering the first 16 bits of a hypothetical bitmap which
has bits 1, 2, 5, 7, 11, and 16 set, these are written (starting from bit
number 1 on the left) as

 1100 1010 0010 0001

 Next treat each group of 4 bits as if it were a hexadecimal number and

write these as follows:

 CA 21

This is how the above examples were constructed for documentation
purposes only.

When considering the physical implementation as observed when analysing
memory or disc file structures, the results will depend on the specific hardware
platform being used.

EXTERNAL INTERFACE SPECIFICATION

VERSION 10.8 – JUN 2025

Hardware Architecture Type 1

On some hardware, for example an IBM PC, bits in a byte are stored least
significant bit to the right and thus if a set of 16 bits is defined, the above
example would be stored as follows (in what appears to be reversed order per
byte) :

0 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0

 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 (Bit positions in a byte)
(First byte) (Second byte)

Hence examination of this example from a memory or disc file dump would
appear as :
 53 84 (hexadecimal)

even though the bitmap was documented as :
 CA 21.

This is to be expected and is quite correct - there is no need to change
the order.

Hardware Architecture Type 2

On a hardware platform which implemented the storage of bits within bytes
with least significant bit leftmost, the physical storage would appear as
matching the documented layout.

